Garlic yield after decomposition and nutrient release of cover crops under no-tillage and conventional tillage

Author:

Hahn LeandroORCID,Wamser Anderson FernandoORCID,Wolschick Neuro HiltonORCID,Grando Douglas LuizORCID,Siqueira Gustavo Nogara deORCID,Brunetto GustavoORCID

Abstract

ABSTRACT Garlic (Allium sativum) is normally grown under conventional tillage (CT) with soil being excessively mixed by plowing and harrowing operations that degrade soil structure, increase production costs, and increase environmental contamination. Alternatively, cover crops can be grown and their residues placed on soil surface, enabling garlic to be grown under no-tillage (NT) system. However, for subtropical climate there is little information on the impacts of tillage systems and cover crop species, particularly of their decomposition process and nutrients release, on garlic nutritional status and yield. This study aimed to evaluate garlic yield, and the decomposition rate and nutrient release from aboveground residues of cover crops cultivated in CT and NT methods, in a subtropical climate. Pearl millet (Pennisetum glaucum), bean (Phaseolus vulgaris) and sunn hemp (Crotalaria ochroleuca) were cultivated as cover crops previous to garlic, under CT or NT, for two consecutive years in the same area. The highest dry matter yield and nutrient release by cover crops were observed for millet and sunn hemp. The highest accumulations of P and K were observed in millet residue. Total garlic yield averaged 16.2 Mg ha -1 yr -1 and was affected neither by tillage method nor by cover crop species. The yield of marketable garlic was higher when soil was covered with bean residue in NT. Yield of non-marketable garlic was higher under CT in the first year, when high precipitation occurred shortly before harvest. The highest residue decomposition and nutrient release rates were observed under CT, in the three cover crop species. No-tillage increases marketable yield of garlic and the residence time of cover crop residues. We recommend cultivation in NT systems using cover crops, thus increasing marketable garlic yield and nutrient cycling.

Publisher

Revista Brasileira de Ciencia do Solo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3