Forecasting of University Students' Performance Using A Hybrid Model of Neural Networks and Fuzzy Logic

Author:

Attieh Mahmoud, ,Awad Mohammed,

Abstract

Abstract: Artificial intelligence techniques can be applied in forecasting the academic performance of university students, with aim of detecting the factors that influence their learning process which allows instructors and university administration to take more effective actions to increase the university student's performance. Identifying the students' performance will improve the quality of education which will be through analyzing and forecasting the students' performance at the course level and degree level. This research focuses on first-year students' performance in two university-requirement courses, depending on features such as attendance, assessment marks, exams, assignments, and projects. Forecasting the students' performance in the whole degree will depend on these features; high school average, Grade Point Average (GPA) for each semester, drop courses, selected core courses in the degree, period of study, and final GPA. A hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) model was used toperform the forecasting process. In this way, based on the datasets collected from the selected courses, or the whole degree, the future results can be forecasted and suggestions can be made to carry out corrective steps to improve the final results. The experiments result of the applied models performed that ANFIS-Grid outperforms the ANFIS-Cluster, wherein each model produces the lowest error of 0.7%, where it just fails in one sample from thirteen samples, while the ANFISCluster after modification produces an error equal to 0.15%. Keywords:University Student Performance, Forecasting, Fuzzy logic, Neural Network, Adaptive Neuro-Fuzzy Inference System.

Publisher

Rajarambapu Institute of Technology

Subject

General Engineering,Development,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis Various Membership Functions Based on Neural Networks for Prediction of Students Graduation;2024 2nd International Conference on Software Engineering and Information Technology (ICoSEIT);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3