Metabolites and Metabolic Pathways Correlated With Beef Tenderness

Author:

Antonelo Daniel1,Gómez Juan F. M.1,Cônsolo Nara R. B.1,Beline Mariane1,Colnago Luiz A.2,Schilling Wes3,Zhang Xue4,Suman Surendranath P5ORCID,Gerrard David E.6,Balieiro Júlio C.C.1,Silva Saulo L.1

Affiliation:

1. University of Sao Paulo

2. EMBRAPA Instrumentation

3. Mississippi State University Department of Food Science, Nutrition and Health Promotion

4. Mississippi State University

5. University of Kentucky Department of Animal and Food Sciences

6. Virginia Tech University

Abstract

Metabolite profile has been used to understand the causes of variability in beef tenderness, but still little is known about how metabolites contribute to beef quality. Therefore, this study was carried out to evaluate how meat metabolites and their metabolic pathways correlate to variability in beef tenderness. Carcasses from 60 noncastrated male cattle were selected, and three 2.5-cm-thick longissimus thoracis steaks were obtained and aged (0°C to 4°C) for 7d. Warner-Bratzler shear force (WBSF) was performed (steak 1). Based on WBSF data, 2 tenderness classes (n = 30; 15 per class [tender and tough]) were created to perform sarcomere length (steak 2) and metabolom ic analysis (steak 3). Meat ultimate pH did not differ between tenderness classes. However, steaks classified as tender had greater sarcomere length (P = 0.019) than those classified as tough. Acetyl-carnitine (P = 0.026), adenine (P = 0.026), beta-alanine (P = 0.005), fumarate (P = 0.022), glutamine (P = 0.043), and valine (P = 0.030) concentration were higher in tender beef compared with tough beef. The 4 most important compounds differing between tender and tough beef were lactate, glucose, creatine, and glutamine, which may indicate that metabolic pathways such as D-glutamine and D-glutamate metabolism, beta-alanine metabolism, purine metabolism, and tricarboxylic acid cycle affected the tenderness classes. Beta-alanine (r = − 0.45), acetyl-carnitine (r = − 0.40), fumarate (r = − 0.38), valine (r = − 0.34), glucose (r = − 0.32), glutamine (r = − 0.31), and adenine (r = −0.31) were negatively correlated with WBSF values. Metabolite profile in tender beef indicated a greater oxidative metabolism, which promoted modifications in the muscle structure and proteolysis, favoring its tenderization.

Publisher

Iowa State University

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3