Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings: a real-world, multicentre and cross-sectional study of 4795 cases

Author:

Gu Chufeng,Wang Yujie,Jiang Yan,Xu Feiping,Wang Shasha,Liu Rui,Yuan Wen,Abudureyimu Nurbiyimu,Wang Ying,Lu Yulan,Li Xiaolong,Wu Tao,Dong Li,Chen Yuzhong,Wang Bin,Zhang Yuncheng,Wei Wen Bin,Qiu Qinghua,Zheng ZhiORCID,Liu Deng,Chen JiliORCID

Abstract

Background/aimsThis study evaluates the performance of the Airdoc retinal artificial intelligence system (ARAS) for detecting multiple fundus diseases in real-world scenarios in primary healthcare settings and investigates the fundus disease spectrum based on ARAS.MethodsThis real-world, multicentre, cross-sectional study was conducted in Shanghai and Xinjiang, China. Six primary healthcare settings were included in this study. Colour fundus photographs were taken and graded by ARAS and retinal specialists. The performance of ARAS is described by its accuracy, sensitivity, specificity and positive and negative predictive values. The spectrum of fundus diseases in primary healthcare settings has also been investigated.ResultsA total of 4795 participants were included. The median age was 57.0 (IQR 39.0–66.0) years, and 3175 (66.2%) participants were female. The accuracy, specificity and negative predictive value of ARAS for detecting normal fundus and 14 retinal abnormalities were high, whereas the sensitivity and positive predictive value varied in detecting different abnormalities. The proportion of retinal drusen, pathological myopia and glaucomatous optic neuropathy was significantly higher in Shanghai than in Xinjiang. Moreover, the percentages of referable diabetic retinopathy, retinal vein occlusion and macular oedema in middle-aged and elderly people in Xinjiang were significantly higher than in Shanghai.ConclusionThis study demonstrated the dependability of ARAS for detecting multiple retinal diseases in primary healthcare settings. Implementing the AI-assisted fundus disease screening system in primary healthcare settings might be beneficial in reducing regional disparities in medical resources. However, the ARAS algorithm must be improved to achieve better performance.Trial registration numberNCT04592068.

Funder

Shanghai Jing'an District Health Research

Shanghai Municipal Health and Family Planning Commission

Shanghai Municipal Commission of Health and Family Planning

Shanghai Medical Key Special Construction Project

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3