Reduced tidal volume-inflection point and elevated operating lung volumes during exercise in females with well-controlled asthma

Author:

Brotto Andrew RORCID,Phillips Devin B,Rowland Samira D,Moore Linn EORCID,Wong Eric,Stickland Michael KORCID

Abstract

IntroductionIndividuals with asthma breathe at higher operating lung volumes during exercise compared with healthy individuals, which contributes to increased exertional dyspnoea. In health, females are more likely to develop exertional dyspnoea than males at a given workload or ventilation, and therefore, it is possible that females with asthma may develop disproportional dyspnoea on exertion. The purpose of this study was to compare operating lung volume and dyspnoea responses during exercise in females with and without asthma.MethodsSixteen female controls and 16 females with asthma were recruited for the study along with 16 male controls and 16 males with asthma as a comparison group. Asthma was confirmed using American Thoracic Society criteria. Participants completed a cycle ergometry cardiopulmonary exercise test to volitional exhaustion. Inspiratory capacity manoeuvres were performed to estimate inspiratory reserve volume (IRV) and dyspnoea was evaluated using the Modified Borg Scale.ResultsFemales with asthma exhibited elevated dyspnoea during submaximal exercise compared with female controls (p<0.05). Females with asthma obtained a similar IRV and dyspnoea at peak exercise compared with healthy females despite lower ventilatory demand, suggesting mechanical constraint to tidal volume (VT) expansion. VT-inflection point was observed at significantly lower ventilation andO2in females with asthma compared with female controls. Forced expired volume in 1 s was significantly associated with VT-inflection point in females with asthma (R2=0.401; p<0.01) but not female controls (R2=0.002; p=0.88).ConclusionThese results suggest that females with asthma are more prone to experience exertional dyspnoea, secondary to dynamic mechanical constraints during submaximal exercise when compared with females without asthma.

Funder

Canadian Institutes of Health Research

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3