Estimating biological age from retinal imaging: a scoping review

Author:

Grimbly Michaela JoanORCID,Koopowitz Sheri-Michelle,Chen RuiyeORCID,Sun ZihanORCID,Foster Paul JORCID,He Mingguang,Stein Dan J,Ipser Jonathan,Zhu ZhuotingORCID

Abstract

Background/AimsThe emerging concept of retinal age, a biomarker derived from retinal images, holds promise in estimating biological age. The retinal age gap (RAG) represents the difference between retinal age and chronological age, which serves as an indicator of deviations from normal ageing. This scoping review aims to collate studies on retinal age to determine its potential clinical utility and to identify knowledge gaps for future research.MethodsUsing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, eligible non-review, human studies were identified, selected and appraised. PubMed, Scopus, SciELO, PsycINFO, Google Scholar, Cochrane, CINAHL, Africa Wide EBSCO, MedRxiv and BioRxiv databases were searched to identify literature pertaining to retinal age, the RAG and their associations. No restrictions were imposed on publication date.ResultsThirteen articles published between 2022 and 2023 were analysed, revealing four models capable of determining biological age from retinal images. Three models, ‘Retinal Age’, ‘EyeAge’ and a ‘convolutional network-based model’, achieved comparable mean absolute errors: 3.55, 3.30 and 3.97, respectively. A fourth model, ‘RetiAGE’, predicting the probability of being older than 65 years, also demonstrated strong predictive ability with respect to clinical outcomes. In the models identified, a higher predicted RAG demonstrated an association with negative occurrences, notably mortality and cardiovascular health outcomes.ConclusionThis review highlights the potential clinical application of retinal age and RAG, emphasising the need for further research to establish their generalisability for clinical use, particularly in neuropsychiatry. The identified models showcase promising accuracy in estimating biological age, suggesting its viability for evaluating health status.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3