Abstract
BackgroundThrombus composition has been shown to be a major determinant of recanalization success and occurrence of complications in mechanical thrombectomy. The most important parameters of thrombus behavior during interventional procedures are relative fractions of fibrin and red blood cells (RBCs). We hypothesized that quantitative information from admission non-contrast CT (NCCT) and CT angiography (CTA) can be used for machine learning based prediction of thrombus composition.MethodsThe analysis included 112 patients with occlusion of the carotid-T or middle cerebral artery who underwent thrombectomy. Thrombi samples were histologically analyzed and fractions of fibrin and RBCs were determined. Thrombi were semi-automatically delineated in CTA scans and NCCT scans were registered to the same space. Two regions of interest (ROIs) were defined for each thrombus: small-diameter ROIs capture vessel walls and thrombi, large-diameter ROIs reflect peri-vascular tissue responses. 4844 quantitative image markers were extracted and evaluated for their ability to predict thrombus composition using random forest algorithms in a nested fivefold cross validation.ResultsTest set receiver operating characteristic area under the curve was 0.83 (95% CI 0.80 to 0.87) for differentiating RBC-rich thrombi and 0.84 (95% CI 0.80 to 0.87) for differentiating fibrin-rich thrombi. At maximum Youden-Index, RBC-rich thrombi were identified at 77% sensitivity and 74% specificity; for fibrin-rich thrombi the classifier reached 81% sensitivity at 73% specificity.ConclusionsMachine learning based analysis of admission imaging allows for prediction of clot composition. Perspectively, such an approach could allow selection of clot-specific devices and retrieval procedures for personalized thrombectomy strategies.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献