Radiation distribution in a hybrid operating room, utilizing different X-ray imaging systems: investigations to minimize occupational exposure

Author:

Cewe PaulinaORCID,Vorbau Robert,Omar Artur,Elmi-Terander AdrianORCID,Edström Erik

Abstract

ObjectivesTo reduce occupational radiation exposure in a hybrid operating room (OR) used for three-dimensional (3D) image guided spine procedures. The effects of staff positioning, different X-ray imaging systems, and freestanding radiation protection shields (RPSs) were considered.MethodsAn anthropomorphic phantom was imaged with a robotic ceiling mounted hybrid OR C-arm cone beam CT (hCBCT), a mobile O-arm CBCT (oCBCT), and a mobile two-dimensional C-arm fluoroscopy system. The resulting scatter doses were measured at different positions in the hybrid OR using active personal dosimeters and an ionization chamber. Two types of RPSs were evaluated.ResultsUsing the hCBCT system instead of the oCBCT system reduced the occupational radiation dose on average by 22%. At 200 cm from the phantom, scatter doses from the hCBCT were 27% lower compared with the oCBCT. One rotational acquisition with hCBCT or oCBCT corresponded to 12 or 16 min of fluoroscopy with the C-arm, respectively. The scatter dose decreased by more than 90% behind an RPS. However, the protection was slightly less effective at 60 cm behind the RPS, due to tertiary scatter from the surroundings.ConclusionsFor 3D image guided spine procedures in the hybrid OR, occupational radiation exposure is lowered by using hCBCT rather than oCBCT. Radiation exposure can also be decreased by optimal staff positioning in the OR, considering distance to the source and positioning relative to the walls, ceiling, and RPS. In this setting and workflow, staff can use RPSs instead of heavy aprons during intraoperative CBCT imaging, to achieve effective whole body dose reduction with improved comfort.

Publisher

BMJ

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3