Massive PD-L1 and CD8 double positive TILs characterize an immunosuppressive microenvironment with high mutational burden in lung cancer

Author:

Zhang Libin,Chen Yanhui,Wang Han,Xu Zheyuan,Wang Yang,Li Sixing,Liu Jun,Chen Yun,Luo Hongli,Wu Lijia,Yang Ying,Zhang Henghui,Peng HaoORCID

Abstract

BackgroundProgrammed cell death ligand 1 (PD-L1) expressed on tumor and immune cells are both associated with the response to programmed cell death 1 (PD-1) pathway blockade therapy. Here, we examine the role of CD8+PD-L1+ tumor-infiltrating lymphocyte (Tils) in the tumor microenvironment of non-small cell lung cancer (NSCLC).MethodsTumor tissue samples of a total of 378 patients from two NSCLC cohorts were collected retrospectively. Tumor genetic variations were measured by targeted next-generation sequencing of 543 oncogenes. Tils were assessed by multiplex immunohistochemistry assay. Correlations among Tils, tumor genetic variations, and clinicopathological characteristics were analyzed.ResultsThe levels of CD8+PD-L1+ Tils varied in NSCLC tumor tissues. Tumor samples with high CD8+PD-L1+ Tils had higher levels of CD8+ Tils, CD68+ macrophages, PD-L1+ tumor cells, PD-1+ Tils, and CD163+ M2-type macrophages, and also had a higher tumor mutation burden, all of which collectively constituted a typically hot but immunosuppressive tumor microenvironment. Therefore, in a non-immunotherapy cohort, we observed that the higher the CD8+PD-L1+ Tils level in the tumor tissue, the worse the prognosis (progression-free survival; cohort A, stage I–II tumor; p=0.005). Contrarily, in an immunotherapy cohort, where the immune suppression was blocked by anti-PD-1 treatment, the higher the CD8+PD-L1+ Tils level, the better the response to the anti-PD-1 treatment (complete response/partial response vs stable disease/progressive disease; cohort B; p=0.0337).ConclusionsCD8+PD-L1+ Tils may be an indicator of the hot but immunosuppressive tumor microenvironment which is related to a high tumor mutation burden. PD-1 pathway blockade therapy can help to mitigate this immunosuppression and obtain better curative effects.

Funder

the Medical and Health Unit with Research Institutions of Scientific Research Projects in Yunnan Province

the Joint Program of Yunnan Province and Kunming Medical University

the National Key Sci-Tech Special Project of China

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3