Zoledronic acid and thymosin α1 elicit antitumor immunity against prostate cancer by enhancing tumor inflammation and cytotoxic T cells

Author:

Wang Sheng,Huang Maohua,Chen Minfeng,Sun Zhiting,Jiao Yubo,Ye Geni,Pan Jinghua,Ye Wencai,Zhao Jianfu,Zhang DongmeiORCID

Abstract

BackgroundAdvanced or metastatic prostate cancer (PCa) is still an incurable malignancy with high lethality and a poor prognosis. Despite the remarkable success of immunotherapy against many types of cancer, most patients with PCa receive minimal benefit from current immunotherapeutic strategies, because PCa is an immune cold tumor with scarce T-cell infiltration in the tumor microenvironment. The aim of this study was to develop an effective immunotherapeutic approach for immune cold PCa tumors.MethodsThe therapeutic efficacy of androgen deprivation therapy (ADT) and zoledronic acid (ZA) plus thymosin α1 (Tα1) therapy was analyzed retrospectively in patients with advanced or metastatic PCa. The effects and mechanisms by which ZA and Tα1 regulated the immune functions of PCa cells and immune cells were evaluated by a PCa allograft mouse model, flow cytometric analysis, immunohistochemical and immunofluorescence staining assays, and PCR, ELISA, and Western blot analyses.ResultsIn this study, clinical retrospective analysis revealed that ADT combined with ZA plus Tα1 improved the therapeutic outcomes of patients with PCa, which might be associated with an enhanced frequency of T cells. ZA and Tα1 treatment synergistically inhibited the growth of androgen-independent PCa allograft tumors, with increased infiltration of tumor-specific cytotoxic CD8+T cells and enhanced tumor inflammation. Functionally, ZA and Tα1 treatment relieved immunosuppression in PCa cells, stimulated pro-inflammatory macrophages, and enhanced the cytotoxic function of T cells. Mechanistically, ZA plus Tα1 therapy blocked the MyD88/NF-κB pathway in PCa cells but activated this signaling in macrophages and T cells, altering the tumor immune landscape to suppress PCa progression.ConclusionsThese findings uncover a previously undefined role for ZA and Tα1 in inhibiting the disease progression of immune cold PCa tumors by enhancing antitumor immunity and pave the way for the application of ZA plus Tα1 therapy as an immunotherapeutic strategy for treating patients with immunologically unresponsive PCa.

Funder

Guangdong Basic and Applied Basic Research Foundation

Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program

Science and Technology Projects in Guangzhou

National High-level Personnel of Special Support Program

Natural Science Foundation of Guangdong Province

China Postdoctoral Science Foundation

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3