Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody

Author:

Song XinyuORCID,Xiong Anwen,Wu Fengying,Li Xuefei,Wang Jing,Jiang Tao,Chen PeixinORCID,Zhang Xiaoshen,Zhao Zhikai,Liu Huifang,Cheng Lei,Zhao Chao,Wang Zhehai,Pan Chaohu,Cui Xiaoli,Xu Ting,Luo Haitao,Zhou Caicun

Abstract

BackgroundImmunotherapy for malignant tumors has made great progress, but many patients do not benefit from it. The complex intratumoral heterogeneity (ITH) hindered the in-depth exploration of immunotherapy. Conventional bulk sequencing has masked intratumor complexity, preventing a more detailed discovery of the impact of ITH on treatment efficacy. Hence, we initiated this study to explore ITH at the multi-omics spatial level and to seek prognostic biomarkers of immunotherapy efficacy considering the presence of ITH.MethodsUsing the segmentation strategy of digital spatial profiling (DSP), we obtained differential information on tumor and stromal regions at the proteomic and transcriptomic levels. Based on the consideration of ITH, signatures constructed by candidate proteins in different regions were used to predict the efficacy of immunotherapy.ResultsEighteen patients treated with a bispecific antibody (bsAb)-KN046 were enrolled in this study. The tumor and stromal areas of the same samples exhibited distinct features. Signatures consisting of 11 and 18 differentially expressed DSP markers from the tumor and stromal areas, respectively, were associated with treatment response. Furthermore, the spatially resolved signature identified from the stromal areas showed greater predictive power for bsAb immunotherapy response (area under the curve=0.838). Subsequently, our stromal signature was validated in an independent cohort of patients with non-small cell lung cancer undergoing immunotherapy.ConclusionWe deciphered ITH at the spatial level and demonstrated for the first time that genetic information in the stromal region can better predict the efficacy of bsAb treatment.Trial registration numberNCT03838848.

Funder

The Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission

Shanghai Pulmonary Hospital Innovation Research Group Project

Shanghai Collaborative Innovation Project

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3