Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy

Author:

Zhang Zhen,Chen Xinfeng,Tian Yonggui,Li FengORCID,Zhao Xuan,Liu Jinyan,Yao Chang,Zhang YiORCID

Abstract

BackgroundTumor relapse due to mutation in CD19 can hinder the efficacy of chimeric antigen receptor (CAR)-T cell therapy. Herein, we focused on lymphoma patients whose B cells exhibited a point mutation in CD19 of B cells after CAR-T cell infusion.MethodsThe CAR-T and CD19+ B cells from peripheral blood or bone marrow were assessed using flow cytometry. Genome sequencing was conducted to identify the molecular characteristics of CAR-T and CD19+ B cells from pre-relapse and postrelapse samples. CD19 in CARs comprising single chain fragments variable (scFV) antibody with FMC63 or 21D4 was constructed. The cytotoxic efficacy of CAR-T cells was also evaluated via in vitro and in vivo experiments.ResultsA patient with high-grade B cell lymphoma exhibited complete response, but the lymphoma relapsed in her left breast at 6 months after CD19 CAR (FMC63)-T cell infusion. A mutation was found in exon 3 of CD19 (p.163. R-L) in malignant B cells of the patient. In two lymphoma patients who exhibited resistance to CAR-T cell therapy, a mutation was detected in exon 3 of CD19 (p.174. L-V). Functional analysis revealed that FMC63 CAR-T cells exhibited antitumor ability against wild-type CD19+ cells but were unable to eradicate these two types of mutated CD19+ cells. Interestingly, 21D4 CAR-T cells were potentially capable of eradicating these mutated CD19+ cells and exhibiting high antitumor capacity against CD19+ cells with loss of exon 1, 2, or 3.ConclusionsThese findings suggest that point mutation can facilitate immune escape from CAR-T cell therapy and that alternative CAR-T cells can effectively eradicate the mutated B cells, providing an individualized therapeutic approach for lymphoma patients showing relapse.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3