Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model

Author:

Kang JinhoORCID,Lee Hye-Jin,Lee Jimin,Hong Jinhwa,Hong Kim Yeul,Disis Mary L,Gim Jeong-An,Park Kyong Hwa

Abstract

BackgroundHeat shock protein 90 (HSP90) is a protein chaperone for most of the important signal transduction pathways in human epidermal growth factor receptor 2-positive (HER2+) breast cancer, including human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor and Akt. The aim of our study is to identify peptide-based vaccines and to develop an effective immunotherapeutics for the treatment of HER2+ breast cancer.MethodsHSP90-derived major histocompatibility complex (MHC) class II epitopes were selected using in silico algorithms and validated by enzyme-linked immunospot (ELISPOT). In vivo antitumor efficacy was evaluated in MMTVneu-transgenic mice. HSP90 peptide-specific systemic T-cell responses were assessed using interferon gamma ELISPOT assay, and immune microenvironment in tumors was evaluated using multiplex immunohistochemistry and TCRβ sequencing.ResultsFirst, candidate HSP90-derived MHC class II epitopes with high binding affinities across multiple human HLA class II genotypes were identified using in silico algorithms. Among the top 10 peptides, p485 and p527 were selected as promising Th1 immunity-inducing epitopes with low potential for Th2 immunity induction. The selected MHC class II HSP90 peptides induced strong antigen-specific T cell responses, which was induced by cross-priming of CD8+ T cells in vivo. The HSP90 peptide vaccines were effective in the established tumor model, and their efficacy was further enhanced when combined with stimulator of interferon genes (STING) agonist and/or anticytotoxic T lymphocyte-associated antigen-4 antibody in MMTVneu-transgenic mice. Increased tumor rejection was associated with increased systemic HSP90-specific T-cell responses, increased T-cell recruitment in tumor microenvironment, intermolecular epitope spreading, and increased rearrangement of TCRβ by STING agonist.ConclusionsIn conclusion, we have provided the first preclinical evidence of the action mechanism of HSP90 peptide vaccines with a distinct potential for improving breast cancer treatment.

Funder

Korea University

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3