Assessing bronchodilator response by changes in per cent predicted forced expiratory volume in one second

Author:

Ioachimescu Octavian CORCID,Ramos Jose A,Hoffman Michael,McCarthy Kevin,Stoller James K

Abstract

In pulmonary function testing by spirometry, bronchodilator responsiveness (BDR) evaluates the degree of volume and airflow improvement in response to an inhaled short-acting bronchodilator (BD). The traditional, binary categorization (present vs absent BDR) has multiple pitfalls and limitations. To overcome these limitations, a novel classification that defines five categories (negative, minimal, mild, moderate and marked BDR), and based on % and absolute changes in forced expiratory volume in 1 s (FEV1), has been recently developed and validated in patients with chronic obstructive pulmonary disease, and against multiple objective and subjective measurements. In this study, working on several large spirometry cohorts from two different institutions (n=31 598 tests), we redefined the novel BDR categories based on delta post-BD–pre-BD FEV1 % predicted values. Our newly proposed BDR partition is based on several distinct intervals for delta post-BD–pre-BD % predicted FEV1 using Global Lung Initiative predictive equations. In testing, training and validation cohorts, the model performed well in all BDR categories. In a validation set that included only normal baseline spirometries, the partition model had a higher rate of misclassification, possibly due to unrestricted BD use prior to baseline testing. A partition that uses delta % predicted FEV1 with the following intervals ≤0%, 0%–2%, 2%–4%, 4%–8% and >8% may be a valid and easy-to-use tool for assessing BDR in spirometry. We confirmed in our cohorts that these thresholds are characterized by low variance and that they are generally gender-independent and race-independent. Future validation in other cohorts and in other populations is needed.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3