Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study

Author:

Hasan Babar S,Hoodbhoy ZahraORCID,Khan Amna,Nogueira Mariana,Bijnens Bart,Chowdhury Devyani

Abstract

IntroductionTimely identification of at-risk neonates (ARNs) in the community is essential to reduce mortality in low-resource settings. Tools such as American Academy of Pediatrics pulse oximetry (POx) and WHO Young Infants Clinical Signs (WHOS) have high specificity but low sensitivity to identify ARNs. Our aim was assessing the value of POx and WHOS independently, in combination and with machine learning (ML) from clinical features, to detect ARNs in a low/middle-income country.MethodsThis prospective cohort study was conducted in a periurban community in Pakistan. Eligible live births were screened using WHOS and POx along with clinical information regarding pregnancy and delivery. The enrolled neonates were followed for 4 weeks of life to assess the vital status. The predictive value to identify ARNs, of POx, WHOS and an ML model using maternal and neonatal clinical features, was assessed.ResultsOf 1336 neonates, 68 (5%) had adverse outcomes, that is, sepsis (n=40, 59%), critical congenital heart disease (n=2, 3%), severe persistent pulmonary hypertension (n=1), hospitalisation (n=8, 12%) and death (n=17, 25%) assessed at 4 weeks of life. Specificity of POx and WHOS to independently identify ARNs was 99%, with sensitivity of 19% and 63%,respectively. Combining both improved sensitivity to 70%, keeping specificity at 98%. An ML model using clinical variables had 44% specificity and 76% sensitivity. A staged assessment, where WHOS, POx and ML are sequentially used for triage, increased sensitivity to 85%, keeping specificity 75%. Using ML (when WHOS and POx negative) for community follow-up detected the majority of ARNs.ConclusionClassic screening, combined with ML, can help maximise identifying ARNs and could be embedded in low-resource clinical settings, thereby improving outcome. Sequential use of classic assessment and clinical ML identifies the most ARNs in the community, still optimising follow-up clinical care.

Funder

Bill and Melinda Gates Foundation

Fundació La Marató de TV3

Islamic Development Bank

Publisher

BMJ

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3