Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations

Author:

Mansouri Kaweh,Gillmann KevinORCID,Rao Harsha LaxmanaORCID,Szurman Peter,Weinreb Robert NORCID

Abstract

PurposeTo evaluate long-term intraocular temperature (IOT) variations in eyes with primary open-angle glaucoma (POAG) using an intraocular telemetric sensor.MethodsThis prospective, open-label, multicentre observational study analysed the IOT variations in 22 eyes of 22 patients with POAG. All enrolled patients underwent implantation of an intraocular pressure (IOP) sensor during cataract surgery. The telemetric system uses a built-in temperature sensor to control measured IOP for temperature. Each time a patient measures their IOP, both the IOP and IOT are recorded in the reader device. Patients were instructed to self-measure their IOP as often as desired, but at least four times daily. Recorded readings were retrieved and analysed using mixed effect models and pairwise comparisons using Bonferroni correction to assess the statistical significance of average IOT variations between each individual weekday and calendar month.ResultsThe mean age of patients was 67.8±6.8 years and 36.4% were women. A total of 132 745 readings over 21 102 measurement-days were obtained. On average, IOT was significantly higher on Sundays (34.57°C; 95% CI 34.37 to 34.78) than on any other day of the week (p<0.001). Mean IOT on other weekdays ranged from 34.48°C to 34.51°C. Over the year, IOT followed a clear seasonal pattern, reaching its maximum in July (34.8°C; 95% CI 34.56 to 34.97) and its minimum in January (34.4°C; 95% CI 34.15 to 34.56; p<0.001).ConclusionsThis study demonstrates the feasibility of continual and long-term measurement of IOT using intraocular sensors. The results show significant short-term and long-term fluctuations of IOT. Research is warranted to understand the impact of IOT variations on IOP, ocular perfusion and glaucoma progression.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3