Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison

Author:

Hipólito-Fernandes DiogoORCID,Luís Maria ElisaORCID,Serras-Pereira Rita,Gil PedroORCID,Maduro Vitor,Feijão João,Alves Nuno

Abstract

Background/AimsTo investigate the influence of anterior chamber depth (ACD) and lens thickness (LT) on 9 intraocular lens (IOL) power calculation formulas accuracy, in patients with normal axial lengths.MethodsRetrospective case series, including patients having uncomplicated cataract surgery with insertion of a single IOL model, divided into three groups according to preoperative ACD. Each group was further subdivided into three subgroups, according to the LT. Using optimised constants, refraction prediction error was calculated for Barrett Universal II, Emmetropia Verifying Optical (EVO) V.2.0, Haigis, Hill-RBF V.2.0, Hoffer Q, Holladay 1, Kane, PEARL-DGS and SRK/T formulas. Mean prediction error, mean and median absolute error (MedAE) and the percentage of eyes within ±0.25D, ±0.50D and ±1.00D were also calculated.ResultsThe study included 695 eyes from 695 patients. For ACD ≤3.0 mm and ≥3.5 mm, mean prediction error of SRK/T, Hoffer Q and Holladay 1 was significantly different from 0 (p<0.05). PEARL-DGS, Kane, EVO V.2.0 and Barrett Universal II were more accurate than the Hoffer Q in ACD ≤3.0 mm (p<0.05). Kane, PEARL-DGS, EVO V.2.0 and Barrett Universal II revealed the lowest variance of mean and MedAE by ACD and LT subgroup. Haigis and Hill-RBF V.2.0 were significantly influenced by LT, independently of the ACD, with a myopic shift with thin lenses and a hyperopic shift with thick lenses (p<0.05).ConclusionNew generation formulas, particularly Kane, PEARL-DGS and EVO V.2.0, seem to be more reliable and stable even in eyes with extreme ACD-LT combinations.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Reference19 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3