Abstract
ObjectivesTo develop a mortality-predictive model for correct identification of patients with non-cancer multiple chronic conditions who would benefit from palliative care, recognise predictive indicators of death and provide with tools for individual risk score calculation.DesignRetrospective observational study with multivariate logistic regression models.ParticipantsAll patients with high-risk multiple chronic conditions incorporated into an integrated care strategy that fulfil two conditions: (1) they belong to the top 5% of the programme’s risk pyramid according to the adjusted morbidity groups stratification tool and (2) they suffer simultaneously at least three selected chronic non-cancer pathologies (n=591).Main outcome measure1 year mortality since patient inclusion in the programme.ResultsAmong study participants, 201 (34%) died within the 1 year follow-up. Variables found to be independently associated to 1 year mortality were the Barthel Scale (p<0.001), creatinine value (p=0.032), existence of pressure ulcers (p=0.029) and patient global status (p<0.001). The area under the curve (AUC) for our model was 0.751, which was validated using bootstrapping (AUC=0.751) and k-fold cross-validation (10 folds; AUC=0.744). The Hosmer-Lemeshow test (p=0.761) showed good calibration.ConclusionsThis study develops and validates a mortality prediction model that will guide transitions of care to non-cancer palliative care services. The model determines prognostic indicators of death and provides tools for the estimation of individual death risk scores for each patient. We present a nomogram, a graphical risk calculation instrument, that favours a practical and easy use of the model within clinical practices.
Funder
Departamento de Educación, Gobierno de Navarra
Subject
Medical–Surgical Nursing,Oncology (nursing),General Medicine,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献