10q23.31 microduplication encompassing PTEN decreases mTOR signalling activity and is associated with autosomal dominant primary microcephaly

Author:

Oliveira Danyllo,Leal Gabriela Ferraz,Sertié Andréa L,Caires Jr Luiz Carlos,Goulart Ernesto,Musso Camila Manso,Oliveira João Ricardo Mendes de,Krepischi Ana Cristina Victorino,Vianna-Morgante Angela Maria,Zatz Mayana

Abstract

BackgroundHereditary primary microcephaly (MCPH) is mainly characterised by decreased occipitofrontal circumference and variable degree of intellectual disability. MCPH with a dominant pattern of inheritance is a rare condition, so far causally linked to pathogenic variants in the ALFY, DPP6, KIF11 and DYRK1A genes.ObjectiveThis study aimed at identifying the causative variant of the autosomal dominant form of MCPH in a Brazilian family with three affected members.MethodsFollowing clinical evaluation of two sibs and their mother presenting with autosomal dominant MCPH, array comparative genome hybridisation was performed using genomic DNA from peripheral blood of the family members. Gene and protein expression studies were carried out in cultured skin fibroblasts.ResultsA 382 kb microduplication at 10q23.31 was detected, encompassing the entire PTEN, KLLN and ATAD1 genes. PTEN haploinsufficiency has been causally associated with macrocephaly and autism spectrum disorder and, therefore, was considered the most likely candidate gene to be involved in this autosomal dominant form of MCPH. In the patients’ fibroblasts, PTEN mRNA and protein were found to be overexpressed, and the phosphorylation patterns of upstream and downstream components of the mammalian target of rapamycin (mTOR) signalling pathway were dysregulated.ConclusionsTaken together, our results demonstrate that the identified submicroscopic 10q23.31 duplication in a family with MCPH leads to markedly increased expression of PTEN and reduced activity of the mTOR signalling pathway. These results suggest that the most probable pathomechanism underlying the microcephaly phenotype in this family involves downregulation of the mTOR pathway through overexpression of PTEN.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3