Ablation of integrin-mediated cell–collagen communication alleviates fibrosis

Author:

Sawant MugdhaORCID,Wang Fang,Koester Janis,Niehoff Anja,Nava Michele M,Lundgren-Akerlund Evy,Gullberg Donald,Leitinger Birgit,Wickström Sara,Eckes Beate,Krieg ThomasORCID

Abstract

ObjectivesActivation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen–fibroblast interactions for regulating fibroblast functions and fibrosis.MethodsTriple knockout (tKO) mice with a combined ablation of integrins α1β1, α2β1 and α11β1 were created to address the significance of integrin-mediated cell–collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed.ResultsTriple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation.ConclusionsThe data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast–collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.

Funder

Deutsche Forschungsgemeinschaft

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3