How machine learning is embedded to support clinician decision making: an analysis of FDA-approved medical devices

Author:

Lyell DavidORCID,Coiera Enrico,Chen Jessica,Shah Parina,Magrabi Farah

Abstract

ObjectiveTo examine how and to what extent medical devices using machine learning (ML) support clinician decision making.MethodsWe searched for medical devices that were (1) approved by the US Food and Drug Administration (FDA) up till February 2020; (2) intended for use by clinicians; (3) in clinical tasks or decisions and (4) used ML. Descriptive information about the clinical task, device task, device input and output, and ML method were extracted. The stage of human information processing automated by ML-based devices and level of autonomy were assessed.ResultsOf 137 candidates, 59 FDA approvals for 49 unique devices were included. Most approvals (n=51) were since 2018. Devices commonly assisted with diagnostic (n=35) and triage (n=10) tasks. Twenty-three devices were assistive, providing decision support but left clinicians to make important decisions including diagnosis. Twelve automated the provision of information (autonomous information), such as quantification of heart ejection fraction, while 14 automatically provided task decisions like triaging the reading of scans according to suspected findings of stroke (autonomous decisions). Stages of human information processing most automated by devices were information analysis, (n=14) providing information as an input into clinician decision making, and decision selection (n=29), where devices provide a decision.ConclusionLeveraging the benefits of ML algorithms to support clinicians while mitigating risks, requires a solid relationship between clinician and ML-based devices. Such relationships must be carefully designed, considering how algorithms are embedded in devices, the tasks supported, information provided and clinicians’ interactions with them.

Funder

National Health and Medical Research Council

Macquarie University

Publisher

BMJ

Subject

Health Information Management,Health Informatics,Computer Science Applications

Reference87 articles.

1. Coiera E . Guide to health informatics. Third edition. ed. Boca Raton: CRC Press, Taylor & Francis Group, 2015.

2. Matheny M , Israni ST , Ahmed M . Artificial intelligence in health care: the hope, the hype, the promise, the peril. Natl Acad Med 2020:94–7.

3. Domingos P . The master algorithm : how the quest for the ultimate learning machine will remake our world. 1st ed. New York: Basic Books, a member of the Perseus Books Group, 2018.

4. Humans and Automation: Use, Misuse, Disuse, Abuse

5. The last mile: where artificial intelligence meets reality;Coiera;J Med Internet Res,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3