Deep learning model for extensive smartphone-based diagnosis and triage of cataracts and multiple corneal diseases

Author:

Ueno Yuta,Oda MasahiroORCID,Yamaguchi TakefumiORCID,Fukuoka Hideki,Nejima Ryohei,Kitaguchi Yoshiyuki,Miyake MasahiroORCID,Akiyama Masato,Miyata Kazunori,Kashiwagi Kenji,Maeda NaoyukiORCID,Shimazaki JunORCID,Noma Hisashi,Mori KensakuORCID,Oshika TetsuroORCID

Abstract

AimTo develop an artificial intelligence (AI) algorithm that diagnoses cataracts/corneal diseases from multiple conditions using smartphone images.MethodsThis study included 6442 images that were captured using a slit-lamp microscope (6106 images) and smartphone (336 images). An AI algorithm was developed based on slit-lamp images to differentiate 36 major diseases (cataracts and corneal diseases) into 9 categories. To validate the AI model, smartphone images were used for the testing dataset. We evaluated AI performance that included sensitivity, specificity and receiver operating characteristic (ROC) curve for the diagnosis and triage of the diseases.ResultsThe AI algorithm achieved an area under the ROC curve of 0.998 (95% CI, 0.992 to 0.999) for normal eyes, 0.986 (95% CI, 0.978 to 0.997) for infectious keratitis, 0.960 (95% CI, 0.925 to 0.994) for immunological keratitis, 0.987 (95% CI, 0.978 to 0.996) for cornea scars, 0.997 (95% CI, 0.992 to 1.000) for ocular surface tumours, 0.993 (95% CI, 0.984 to 1.000) for corneal deposits, 1.000 (95% CI, 1.000 to 1.000) for acute angle-closure glaucoma, 0.992 (95% CI, 0.985 to 0.999) for cataracts and 0.993 (95% CI, 0.985 to 1.000) for bullous keratopathy. The triage of referral suggestion using the smartphone images exhibited high performance, in which the sensitivity and specificity were 1.00 (95% CI, 0.478 to 1.00) and 1.00 (95% CI, 0.976 to 1.000) for ‘urgent’, 0.867 (95% CI, 0.683 to 0.962) and 1.00 (95% CI, 0.971 to 1.000) for ‘semi-urgent’, 0.853 (95% CI, 0.689 to 0.950) and 0.983 (95% CI, 0.942 to 0.998) for ‘routine’ and 1.00 (95% CI, 0.958 to 1.00) and 0.896 (95% CI, 0.797 to 0.957) for ‘observation’, respectively.ConclusionsThe AI system achieved promising performance in the diagnosis of cataracts and corneal diseases.

Funder

Japan Agency for Medical Research and Development

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3