Accuracy of GPT-4 in histopathological image detection and classification of colorectal adenomas

Author:

Laohawetwanit ThiyaphatORCID,Namboonlue ChutimonORCID,Apornvirat SomponORCID

Abstract

AimsTo evaluate the accuracy of Chat Generative Pre-trained Transformer (ChatGPT) powered by GPT-4 in histopathological image detection and classification of colorectal adenomas using the diagnostic consensus provided by pathologists as a reference standard.MethodsA study was conducted with 100 colorectal polyp photomicrographs, comprising an equal number of adenomas and non-adenomas, classified by two pathologists. These images were analysed by classic GPT-4 for 1 time in October 2023 and custom GPT-4 for 20 times in December 2023. GPT-4’s responses were compared against the reference standard through statistical measures to evaluate its proficiency in histopathological diagnosis, with the pathologists further assessing the model’s descriptive accuracy.ResultsGPT-4 demonstrated a median sensitivity of 74% and specificity of 36% for adenoma detection. The median accuracy of polyp classification varied, ranging from 16% for non-specific changes to 36% for tubular adenomas. Its diagnostic consistency, indicated by low kappa values ranging from 0.06 to 0.11, suggested only poor to slight agreement. All of the microscopic descriptions corresponded with their diagnoses. GPT-4 also commented about the limitations in its diagnoses (eg, slide diagnosis best done by pathologists, the inadequacy of single-image diagnostic conclusions, the need for clinical data and a higher magnification view).ConclusionsGPT-4 showed high sensitivity but low specificity in detecting adenomas and varied accuracy for polyp classification. However, its diagnostic consistency was low. This artificial intelligence tool acknowledged its diagnostic limitations, emphasising the need for a pathologist’s expertise and additional clinical context.

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3