Novel multiclass classification machine learning approach for the early-stage classification of systemic autoimmune rheumatic diseases

Author:

Wang Yun,Wei Wei,Ouyang Renren,Chen Rujia,Wang Ting,Yuan Xu,Wang Feng,Hou Hongyan,Wu ShijiORCID

Abstract

ObjectiveSystemic autoimmune rheumatic diseases (SARDs) encompass a diverse group of complex conditions with overlapping clinical features, making accurate diagnosis challenging. This study aims to develop a multiclass machine learning (ML) model for early-stage SARDs classification using accessible laboratory indicators.MethodsA total of 925 SARDs patients were included, categorised into SLE, Sjögren’s syndrome (SS) and inflammatory myositis (IM). Clinical characteristics and laboratory markers were collected and nine key indicators, including anti-dsDNA, anti-SS-A60, anti-Sm/nRNP, antichromatin, anti-dsDNA (indirect immunofluorescence assay), haemoglobin (Hb), platelet, neutrophil percentage and cytoplasmic patterns (AC-19, AC-20), were selected for model building. Various ML algorithms were used to construct a tripartite classification ML model.ResultsPatients were divided into two cohorts, cohort 1 was used to construct a tripartite classification model. Among models assessed, the random forest (RF) model demonstrated superior performance in distinguishing SLE, IM and SS (with area under curve=0.953, 0.903 and 0.836; accuracy= 0.892, 0.869 and 0.857; sensitivity= 0.890, 0.868 and 0.795; specificity= 0.910, 0.836 and 0.748; positive predictive value=0.922, 0.727 and 0.663; and negative predictive value= 0.854, 0.915 and 0.879). The RF model excelled in classifying SLE (precision=0.930, recall=0.985, F1 score=0.957). For IM and SS, RF model outcomes were (precision=0.793, 0.950; recall=0.920, 0.679; F1 score=0.852, 0.792). Cohort 2 served as an external validation set, achieving an overall accuracy of 87.3%. Individual classification performances for SLE, SS and IM were excellent, with precision, recall and F1 scores specified. SHAP analysis highlighted significant contributions from antibody profiles.ConclusionThis pioneering multiclass ML model, using basic laboratory indicators, enhances clinical feasibility and demonstrates promising potential for SARDs classification. The collaboration of clinical expertise and ML offers a nuanced approach to SARDs classification, with potential for enhanced patient care.

Funder

Hubei Provincial Health Commission

Publisher

BMJ

Subject

Rheumatology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3