Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy

Author:

Brew C J,Clegg P D,Boot-Handford R P,Andrew J G,Hardingham T

Abstract

Objectives:To investigate changes in gene expression in fibrillated and intact human osteoarthritis (OA) cartilage for evidence of an altered chondrocyte phenotype and hypertrophy.Methods:Paired osteochondral samples were taken from a high-load site and a low-load site from 25 OA joints and were compared with eight similar paired samples from age-matched controls. Gene expression of key matrix and regulatory genes was analysed by quantitative real-time reverse transcription-polymerase chain reaction on total RNA extracted from the cartilage.Results:There was a major change in chondrocyte gene expression in OA cartilage. SOX9 (38-fold) and aggrecan (4-fold) gene expression were both lower in OA (p<0.001), and collagen I (17-fold) and II (2.5-fold) gene expression were each increased in a subset of OA samples. The major changes in gene expression were similar at the fibrillated high-loaded site and the intact low-loaded site. There was no evidence of a generalised change in OA to proliferative or hypertrophic phenotype as seen in the growth plate, as genes associated with either stage of differentiation were unchanged (PTHrPR), or significantly downregulated (collagen X (14-fold, p<0.002), VEGF (23-fold, p<0.02), BCL-2 (5.6-fold, p<0.001), matrilin-1 (6.5-fold, p<0.001)). In contrast MMP-13 was significantly upregulated in the OA cartilage samples (5.3-fold, p<0.003).Conclusions:The expression of key chondrocyte genes, including aggrecan and SOX9, was decreased in OA cartilage and the changes were similar in both fibrillated high-loaded and intact low-loaded cartilage on the same joint. However, there was no significant upregulation of type X collagen, and other genes associated with chondrocyte further differentiation and hypertrophy.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3