Neuroblastoma-derived v-myc avian myelocytomatosis viral related oncogene orMYCNgene

Author:

Bhardwaj Neha,Das Gargi,Srinivasan RadhikaORCID

Abstract

TheMYCNgene belongs to the MYC family of transcription factors. Amplification ofMYCN, first discovered in neuroblastoma cells, ushered in the era of cancer genomics. TheMYCNgene and MYCN protein are extensively studied in the context of neuroblastoma. As demonstrated in transgenic mouse models,MYCNgene shows a restricted spatiotemporal expression predominantly in the neural crest cells which explains the associated neoplasms including neuroblastoma and central nervous system tumours. In neuroblastoma,MYCNamplification is a marker of aggressive tumours with poor prognosis and survival and forms the basis of risk stratification classifications.MYCNdysregulated expression occurs by several mechanisms at the transcriptional, translational and post-translational levels. These include massive gene amplification which occurs in an extrachromosomal location, upregulated transcription and stabilisation of the protein increasing its half-life. MYCN protein, a basic loop-helix-loop leucine zipper transcription factor, has many regions which bind to several proteins foremost of which is MAX forming the MYC:MAX heterodimer. Overall, MYCN controls multiple aspects of cell fate, foremost of which is cellular proliferation besides cell differentiation, apoptosis and cellular metabolism, all of which are the focus of this brief review. In addition to amplification, other mechanisms of MYCN overexpression include activating missense mutations as reported in basal cell carcinoma and Wilms tumour. A better understanding of this molecule will help in the discovery of novel strategies for its indirect targeting to improve the outcomes of patients with neuroblastoma and other MYCN-associated neoplasms.

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3