Forecasting disease trajectories in critical illness: comparison of probabilistic dynamic systems to static models to predict patient status in the intensive care unit

Author:

Duggal AbhijitORCID,Scheraga Rachel,Sacha Gretchen L,Wang XiaofengORCID,Huang ShuaquiORCID,Krishnan Sudhir,Siuba Matthew T,Torbic Heather,Dugar Siddharth,Mucha Simon,Veith Joshua,Mireles-Cabodevila Eduardo,Bauer Seth R,Kethireddy Shravan,Vachharajani Vidula,Dalton Jarrod E

Abstract

ObjectiveConventional prediction models fail to integrate the constantly evolving nature of critical illness. Alternative modelling approaches to study dynamic changes in critical illness progression are needed. We compare static risk prediction models to dynamic probabilistic models in early critical illness.DesignWe developed models to simulate disease trajectories of critically ill COVID-19 patients across different disease states. Eighty per cent of cases were randomly assigned to a training and 20% of the cases were used as a validation cohort. Conventional risk prediction models were developed to analyse different disease states for critically ill patients for the first 7 days of intensive care unit (ICU) stay. Daily disease state transitions were modelled using a series of multivariable, multinomial logistic regression models. A probabilistic dynamic systems modelling approach was used to predict disease trajectory over the first 7 days of an ICU admission. Forecast accuracy was assessed and simulated patient clinical trajectories were developed through our algorithm.Setting and participantsWe retrospectively studied patients admitted to a Cleveland Clinic Healthcare System in Ohio, for the treatment of COVID-19 from March 2020 to December 2022.Results5241 patients were included in the analysis. For ICU days 2–7, the static (conventional) modelling approach, the accuracy of the models steadily decreased as a function of time, with area under the curve (AUC) for each health state below 0.8. But the dynamic forecasting approach improved its ability to predict as a function of time. AUC for the dynamic forecasting approach were all above 0.90 for ICU days 4–7 for all states.ConclusionWe demonstrated that modelling critical care outcomes as a dynamic system improved the forecasting accuracy of the disease state. Our model accurately identified different disease conditions and trajectories, with a <10% misclassification rate over the first week of critical illness.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3