Prediction of large vessel occlusion for ischaemic stroke by using the machine learning model random forests

Author:

Wang JiananORCID,Zhang Jungen,Gong Xiaoxian,Zhang Wenhua,Zhou Ying,Lou Min

Abstract

BackgroundsThe timely identification of large vessel occlusion (LVO) in the prehospital stage is extremely important given the disease morbidity and narrow time window for intervention. The current evaluation strategies still remain challenging. The goal of this study was to develop a machine learning (ML) model to predict LVO using prehospital accessible data.MethodsConsecutive acute ischaemic stroke patients who underwent CT or MR angiography and received reperfusion therapy within 8 hours from symptom onset in the Computer-based Online Database of Acute Stroke Patients for Stroke Management Quality Evaluation-II dataset from January 2016 to August 2021 were included. We developed eight ML models to integrate National Institutes of Health Stroke Scale (NIHSS) items with demographics, medical history and vascular risk factors to identify LVO and validate its efficiency.ResultsFinally, 15 365 patients were included in the training set and 4215 patients were included in the test set. On the test set, random forests (RF), gradient boosting machine and extreme gradient boosting presented area under the curve (AUC) of 0.831 (95% CI 0.819 to 0.843), which were higher than other models, and RF presented the highest specificity (0.827). In addition, the AUC of RF was higher than other scales, and the accuracy of the model was improved by 6.4% compared with NIHSS. We also found the top five items of identifying LVO were total NIHSS score, gaze deviation, level of consciousness (LOC), LOC commands and motor left leg.ConclusionsOur proposed model could be a useful screening tool to predict LVO based on the prehospital accessible medical data.Trial registration numberNCT04487340.

Funder

National Natural Science Foundation of China

Science Technology Department of Zhejiang Province

National Key Research

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3