Intelligent cholinergic white matter pathways algorithm based on U-net reflects cognitive impairment in patients with silent cerebrovascular disease

Author:

Fei Beini,Cheng Yu,Liu Ying,Zhang Guangzheng,Ge Anyan,Luo Junyi,Wu Shan,Wang HeORCID,Ding JingORCID,Wang Xin

Abstract

Background and objectiveThe injury of the cholinergic white matter pathway underlies cognition decline in patients with silent cerebrovascular disease (SCD) with white matter hyperintensities (WMH) of vascular origin. However, the evaluation of the cholinergic white matter pathway is complex with poor consistency. We established an intelligent algorithm to evaluate WMH in the cholinergic pathway.MethodsPatients with SCD with WMH of vascular origin were enrolled. The Cholinergic Pathways Hyperintensities Scale (CHIPS) was used to measure cholinergic white matter pathway impairment. The intelligent algorithm used a deep learning model based on convolutional neural networks to achieve WMH segmentation and CHIPS scoring. The diagnostic value of the intelligent algorithm for moderate-to-severe cholinergic pathway injury was calculated. The correlation between the WMH in the cholinergic pathway and cognitive function was analysed.ResultsA number of 464 patients with SCD were enrolled in internal training and test set. The algorithm was validated using data from an external cohort comprising 100 patients with SCD. The sensitivity, specificity and area under the curve of the intelligent algorithm to assess moderate and severe cholinergic white matter pathway injury were 91.7%, 87.3%, 0.903 (95% CI 0.861 to 0.952) and 86.5%, 81.3%, 0.868 (95% CI 0.819 to 0.921) for the internal test set and external validation set. for the. The general cognitive function, execution function and attention showed significant differences among the three groups of different CHIPS score (all p<0.05).DiscussionWe have established the first intelligent algorithm to evaluate the cholinergic white matter pathway with good accuracy compared with the gold standard. It helps more easily assess the cognitive function in patients with SCD.

Funder

Shanghai Municipal Committee of Science and Technology

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3