Hypoxia-inducible factor-1α mediates reflux-induced epithelial-mesenchymal plasticity in Barrett’s oesophagus patients

Author:

Zhang Qiuyang,Dunbar Kerry B,Odze Robert D,Agoston Agoston T,Wang Xuan,Su Tianhong,Nguyen Anh D,Zhang Xi,Spechler Stuart JonORCID,Souza Rhonda FORCID

Abstract

Introduction Epithelial-mesenchymal plasticity (EMP), the process through which epithelial cells acquire mesenchymal features, is needed for wound repair but also might contribute to cancer initiation. Earlier, in vitro studies showed that Barrett’s cells exposed to acidic bile salt solutions (ABS) develop EMP. Now, we have (1) induced reflux oesophagitis in Barrett’s oesophagus (BO) patients by stopping proton pump inhibitors (PPIs), (2) assessed their biopsies for EMP and (3) explored molecular pathways underlying reflux-induced EMP in BO cells and spheroids. Methods 15 BO patients had endoscopy with biopsies of Barrett’s metaplasia while on PPIs, and 1 and 2 weeks after stopping PPIs; RNA-seq data were assessed for enrichments in hypoxia-inducible factors (HIFs), angiogenesis and EMP pathways. In BO biopsies, cell lines and spheroids, EMP features (motility) and markers (vascular endothelial growth factor (VEGF), ZEB1, miR-200a&b) were evaluated by morphology, migration assays, immunostaining and qPCR; HIF-1α was knocked down with siRNA or shRNA. Results At 1 and/or 2 weeks off PPIs, BO biopsies exhibited EMP features and markers, with significant enrichment for HIF-1α, angiogenesis and EMP pathways. In BO cells, ABS induced HIF-1α activation, which decreased miR-200a&b while increasing VEGF, ZEB1 and motility; HIF-1α knockdown blocked these effects. After ABS treatment, BO spheroids exhibited migratory protrusions showing nuclear HIF-1α, increased VEGF and decreased miR-200a&b. Conclusions In BO patients, reflux oesophagitis induces EMP changes associated with increased HIF-1α signalling in Barrett’s metaplasia. In Barrett’s cells, ABS trigger EMP via HIF-1α signalling. Thus, HIF-1α appears to play a key role in mediating reflux-induced EMP that might contribute to cancer in BO. Trial registration number NCT02579460 .

Funder

US Department of Veterans Affairs

Baylor Scott and White Research Institute

National Institutes of Health

NIH

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3