Online clinical tool to estimate risk of bronchopulmonary dysplasia in extremely preterm infants

Author:

Greenberg Rachel GORCID,McDonald Scott A,Laughon Matthew M,Tanaka David,Jensen Erik,Van Meurs Krisa,Eichenwald Eric,Brumbaugh Jane E,Duncan Andrea,Walsh Michele,Das AbhikORCID,Cotten C Michael

Abstract

ObjectiveDevelop an online estimator that accurately predicts bronchopulmonary dysplasia (BPD) severity or death using readily-available demographic and clinical data.DesignRetrospective analysis of data entered into a prospective registry.SettingInfants cared for at centres of the United States Neonatal Research Network between 2011 and 2017.PatientsInfants 501–1250 g birth weight and 23 0/7–28 6/7 weeks’ gestation.InterventionsNone.Main outcome measuresSeparate multinomial regression models for postnatal days 1, 3, 7, 14 and 28 were developed to estimate the individual probabilities of death or BPD severity (no BPD, grade 1 BPD, grade 2 BPD, grade 3 BPD) defined according to the mode of respiratory support administered at 36 weeks’ postmenstrual age.ResultsAmong 9181 included infants, birth weight was most predictive of death or BPD severity on postnatal day 1, while mode of respiratory support was the most predictive factor on days 3, 7, 14 and 28. The predictive accuracy of the models increased at each time period from postnatal day 1 (C-statistic: 0.674) to postnatal day 28 (C-statistic 0.741). We used these results to develop a web-based model that provides predicted estimates for BPD by postnatal day.ConclusionThe probability of BPD or death in extremely preterm infants can be estimated with reasonable accuracy using a limited amount of readily available clinical information. This tool may aid clinical prognostication, future research, and center-specific quality improvement surrounding BPD prevention.Trial registration numberNCT00063063

Funder

National Center for Research Resources

National Center for Advancing Translational Sciences

The National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

BMJ

Subject

Obstetrics and Gynecology,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3