Faecal microbiota study reveals specific dysbiosis in spondyloarthritis

Author:

Breban MaximeORCID,Tap Julien,Leboime Ariane,Said-Nahal Roula,Langella Philippe,Chiocchia Gilles,Furet Jean-Pierre,Sokol Harry

Abstract

ObjectiveAltered microbiota composition or dysbiosis is suspected to be implicated in the pathogenesis of chronic inflammatory diseases, such as spondyloarthritis (SpA) and rheumatoid arthritis (RA).Methods16S ribosomal RNA gene sequencing was performed on faecal DNA isolated from stool samples in two consecutive cross-sectional cohorts, each comprising three groups of adult volunteers: SpA, RA and healthy controls (HCs). In the second study, HCs comprised a majority of aged-matched siblings of patients with known HLA-B27 status. Alpha and beta diversities were assessed using QIIME, and comparisons were performed using linear discriminant analysis effect size to examine differences between groups.ResultsIn both cohorts, dysbiosis was evidenced in SpA and RA, as compared with HCs, and was disease specific. A restriction of microbiota biodiversity was detected in both disease groups. The most striking change was a twofold to threefold increased abundance of Ruminococcus gnavus in SpA, as compared with both RA and HCs that was significant in both studies and positively correlated with disease activity in patients having a history of inflammatory bowel disease (IBD). Among HCs, significant difference in microbiota composition were also detected between HLA-B27+ and HLA-B27 negative siblings, suggesting that genetic background may influence gut microbiota composition.ConclusionOur results suggest that distinctive dysbiosis characterise both SpA and RA and evidence a reproducible increase in R. gnavus that appears specific for SpA and a marker of disease activity. This observation is consistent with the known proinflammatory role of this bacteria and its association with IBD. It may provide an explanation for the link that exists between SpA and IBD.

Funder

Agence Nationale de la Recherche

UCB Laboratories

Assistance Publique - Hôpitaux de Paris

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3