Coronary wave intensity patterns in stable coronary artery disease: influence of stenosis severity and collateral circulation

Author:

deMarchi Stefano FORCID,Gassmann Christian,Traupe Tobias,Gloekler SteffenORCID,Cook Stéphane,Vogel Rolf,Gysi Kurt,Seiler Christian

Abstract

ObjectiveWave intensity analysis is a method that allows separating pulse waves into components generated proximally and in the periphery of arterial trees, as well as characterising them as accelerating or decelerating. The early diastolic suction wave (eaDSW) is one of the most prominent wave events in the coronaries. The aim of this study was to determine whether (1) microvascular dilatation directly influences its energy, (2) stenosis severity can be assessed proximal to stenoses, (3) distal pulse wave entrapment exists in the presence of stenoses and (4) coronary collaterals influence wave entrapment.MethodsIn 43 coronary artery disease patients, Doppler flow velocity and pressure measurements were performed in a proximal coronary segment at rest, in a distal segment at rest, during adenosine-induced hyperaemia and during balloon occlusion. Wave energies were calculated as the area under the wave intensity curves.ResultsThe eaDSW energy showed a significant increase during hyperaemia, but did not differ between proximal and distal segments. There was no significant correlation between eaDSW energy and coronary stenosis severity. Pulse wave entrapment could not be observed consistently in the distal segments. Consequently, the effect of coronary collaterals on pulse wave entrapment could not be studied.ConclusionsMicrovascular dilation in the coronary circulation increases distal eaDSW energy. However, it does not show any diagnostically useful variation between measurement sites, various stenosis degrees and amount of collateral flow. The assessment eaDSW and its reflections were not useful for the quantification of coronary stenosis severity or the collateral circulation in clinical practice.

Funder

Swiss National Science Foundation

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simple coronary blood flow model to study the collateral flow index;Biomechanics and Modeling in Mechanobiology;2021-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3