Recognition and Repetition Counting for LME Exercises in Exercise-Based CVD Rehabilitation: A Comparative Study Using Artificial Intelligence Models

Author:

Prabhu GhanashyamaORCID,O'Connor Noel E.ORCID,Moran KieranORCID

Abstract

Exercise-based cardiac rehabilitation requires patients to perform a set of certain prescribed exercises a specific number of times. Local muscular endurance (LME) exercises are an important part of the rehabilitation program. Automatic exercise recognition and repetition counting, from wearable sensor data is an important technology to enable patients to perform exercises independently in remote settings, e.g. their own home. In this paper we first report on a comparison of traditional approaches to exercise recognition and repetition counting, corresponding to supervised machine learning and peak detection from inertial sensing signals respectively, with more recent machine learning approaches, specifically Convolutional Neural Networks (CNNs). We investigated two different types of CNN: one using the AlexNet architecture, the other using time-series array. We found that the performance of CNN based approaches were better than the traditional approaches. For exercise recognition task, we found that the AlexNet based single CNN model outperformed other methods with an overall 97.18% F1-score measure. For exercise repetition counting , again the AlexNet architecture based single CNN model outperformed other methods by correctly counting repetitions in 90% of the performed exercise sets within an error of ±1. To the best of our knowledge, our approach of using a single CNN method for both recognition and repetition counting is novel. In addition to reporting our findings, we also make the dataset we created, the INSIGHT-LME dataset, publicly available to encourage further research.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3