Desiccation Tolerance as The Basis of Long-Term Seed Viability

Author:

Smolikova GalinaORCID,Leonova Tatiana,Vashurina Natalia,Frolov Andrej,Medvedev SergeiORCID

Abstract

Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment, which essentially increased their ability to sustain water deficit and dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature in the higher vascular plants is restricted to the dehydration protection of spores, seeds and pollen, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of their water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant proteins (LEA proteins), small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance onset are abscisic acid and protein DOG1, which control the network of transcription factors, among which are LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression by methylation of DNA, post-translational modifications of histones and chromatin remodeling impact on seed desiccation tolerance and longevity. Moreover, orthodox seeds are able to maintain desiccation tolerance during germination up to the stage of radicle protrusion. This time point is critical in the process of seed development, as the seeds lose desiccation tolerance at this moment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3