Human Remains Identification Using Micro-CT, Chemometric and A.I. Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Acid Significant Impact

Author:

Thurzo Andrej,Jančovičová Viera,Hain MiroslavORCID,Thurzo Milan,Novák Bohuslav,Kosnáčová HelenaORCID,Lehotská VieraORCID,Varga IvanORCID,Moravanský Norbert

Abstract

(1) Teeth, represent in humans the most resilient tissues. However, exposure to concentrated acids might lead to their obliteration, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper introduces novel method of 3D reconstruction of dental patterns as a crucial step for digital identification with dental records.; (2) With combination of modern methods of Micro-Computer Tomography, Cone Beam Computer Tomography, Attenuated Total Reflection in conjunction with Fourier-Transform Infrared Spectroscopy and Artificial Intelligence Convolutional Neural Network algorithms, the paper presents the way of 3D dental pattern reconstruction and human remains identification. Research studies morphology of teeth, bone, and dental materials (Amalgam, Composite, Glass-ionomer cement) under different periods of exposure to 75% sulfuric acid; (3) Results reveal significant volume loss in bone, enamel, dentine, and as well glass-ionomer cement. Results also reveal significant resistance of composite and amalgam dental materials to sulfuric acid impact, thus serving as strong parts in the dental pattern mosaic. Paper also introduces probably first successful artificial intelligence application in automated forensic CBCT segmentation.; (4) Interdisciplinary cooperation utilizing mentioned technologies can solve problem of human remains identification with 3D reconstruction of dental patterns and their 2D projections over existing ante-mortem records.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3