Evaluation of Preoperative Variables that Improve the Predictive Accuracy of the Risk Assessment and Prediction Tool in Primary Total Hip Arthroplasty

Author:

Bloom David A.,Bieganowski ThomasORCID,Robin Joseph X.,Arshi Armin,Schwarzkopf Ran,Rozell Joshua C.

Abstract

Introduction: Discharge disposition after total joint arthroplasty may be predictable. Previous literature has attempted to improve upon models such as the Risk Assessment and Prediction Tool (RAPT) in an effort to optimize postoperative planning. The purpose of this study was to determine whether preoperative laboratory values and other previously unstudied demographic factors could improve the predictive accuracy of the RAPT. Methods: All patients included had RAPT scores in addition to the following preoperative laboratory values: red blood cell count, albumin, and vitamin D. All values were recorded within 90 days of surgery. Demographic variables including marital status, American Society of Anesthesiologists (ASA) scores, body mass index, Charlson Comorbidity Index, and depression were also evaluated. Binary logistic regression was used to determine the significance of each factor in association with discharge disposition. Results: Univariate logistic regression found significant associations between discharge disposition and all original RAPT factors as well as nonmarried patients (P < 0.001), ASA class 3 to 4 (P < 0.001), body mass index >30 kg/m2 (P = 0.065), red blood cell count <4 million/mm3 (P < 0.001), albumin <3.5 g/dL (P < 0.001), Charlson Comorbidity Index (P < 0.001), and a history of depression (P < 0.001). All notable univariate models were used to create a multivariate model with an overall predictive accuracy of 90.1%. Conclusions: The addition of preoperative laboratory values and additional demographic data to the RAPT may improve its PA. Orthopaedic surgeons could benefit from incorporating these values as part of their discharge planning in THA. Machine learning may be able to identify other factors to make the model even more predictive.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3