Utilization of Unmanned Aerial Vehicle, Artificial Intelligence, and Remote Measurement Technology for Bridge Inspections
-
Published:2020-12-20
Issue:6
Volume:32
Page:1244-1258
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Chun Pang-jo,Dang Ji,Hamasaki Shunsuke,Yajima Ryosuke,Kameda Toshihiro,Wada Hideki,Yamane Tatsuro,Izumi Shota,Nagatani Keiji, , , , , ,
Abstract
In recent years, aging of bridges has become a growing concern, and the danger of bridge collapse is increasing. To appropriately maintain bridges, it is necessary to perform inspections to accurately understand their current state. Until now, bridge inspections have involved a visual inspection in which inspection personnel come close to the bridges to perform inspection and hammering tests to investigate abnormal noises by hammering the bridges with an inspection hammer. Meanwhile, as there are a large number of bridges (for example, 730,000 bridges in Japan), and many of these are constructed at elevated spots; the issue is that the visual inspections are laborious and require huge cost. Another issue is the wide disparity in the quality of visual inspections due to the experience, knowledge, and competence of inspectors. Accordingly, the authors are trying to resolve or ameliorate these issues using unmanned aerial vehicle (UAV) technology, artificial intelligence (AI) technology, and telecommunications technology. This is discussed first in this paper. Next, the authors discuss the future prospects of bridge inspection using robot technology such as a 3-D model of bridges. The goal of this paper is to show the areas in which deployment of the UAV, robots, telecommunications, and AI is beneficial and the requirements of these technologies.
Funder
National Research Institute for Earth Science and Disaster Resilience Japan Science and Technology Agency
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference28 articles.
1. Ministry of Land, Infrastructure, Transport and Tourism (MLIT), “Roads In Japan,” Road Bureau, 2018. 2. “2017 report card for America’s infrastructure,” American Society of Civil Engineers, 2017. 3. P. Chun, T. Yamane, S. Izumi, and T. Kameda, “Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning,” Metals, Vol.9, No.12, p. 1259, 2019. 4. P. Chun, K. Tsukada, M. Kusumoto, and K. Okubo, “Investigation and repair plan for abraded steel bridge piers: case study from Japan,” Proc. of the Institution of Civil Engineers-Forensic Engineering, Vol.172, No.1, pp. 11-18, 2019. 5. T. Tamakoshi, M. Ookubo, M. Hoshino, Y. Yokoi, and Y. Kowase, “Reference to MLIT’s bridge inspection manual (2013) – Photographs related to damage rating and maintenance urgency ratings –,” Technical Note of NILIM, No.748, 2013.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|