Utilization of Unmanned Aerial Vehicle, Artificial Intelligence, and Remote Measurement Technology for Bridge Inspections

Author:

Chun Pang-jo,Dang Ji,Hamasaki Shunsuke,Yajima Ryosuke,Kameda Toshihiro,Wada Hideki,Yamane Tatsuro,Izumi Shota,Nagatani Keiji, , , , , ,

Abstract

In recent years, aging of bridges has become a growing concern, and the danger of bridge collapse is increasing. To appropriately maintain bridges, it is necessary to perform inspections to accurately understand their current state. Until now, bridge inspections have involved a visual inspection in which inspection personnel come close to the bridges to perform inspection and hammering tests to investigate abnormal noises by hammering the bridges with an inspection hammer. Meanwhile, as there are a large number of bridges (for example, 730,000 bridges in Japan), and many of these are constructed at elevated spots; the issue is that the visual inspections are laborious and require huge cost. Another issue is the wide disparity in the quality of visual inspections due to the experience, knowledge, and competence of inspectors. Accordingly, the authors are trying to resolve or ameliorate these issues using unmanned aerial vehicle (UAV) technology, artificial intelligence (AI) technology, and telecommunications technology. This is discussed first in this paper. Next, the authors discuss the future prospects of bridge inspection using robot technology such as a 3-D model of bridges. The goal of this paper is to show the areas in which deployment of the UAV, robots, telecommunications, and AI is beneficial and the requirements of these technologies.

Funder

National Research Institute for Earth Science and Disaster Resilience

Japan Science and Technology Agency

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference28 articles.

1. Ministry of Land, Infrastructure, Transport and Tourism (MLIT), “Roads In Japan,” Road Bureau, 2018.

2. “2017 report card for America’s infrastructure,” American Society of Civil Engineers, 2017.

3. P. Chun, T. Yamane, S. Izumi, and T. Kameda, “Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning,” Metals, Vol.9, No.12, p. 1259, 2019.

4. P. Chun, K. Tsukada, M. Kusumoto, and K. Okubo, “Investigation and repair plan for abraded steel bridge piers: case study from Japan,” Proc. of the Institution of Civil Engineers-Forensic Engineering, Vol.172, No.1, pp. 11-18, 2019.

5. T. Tamakoshi, M. Ookubo, M. Hoshino, Y. Yokoi, and Y. Kowase, “Reference to MLIT’s bridge inspection manual (2013) – Photographs related to damage rating and maintenance urgency ratings –,” Technical Note of NILIM, No.748, 2013.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3