Offline Direct Teaching for a Robotic Manipulator in the Computational Space

Author:

Makita Satoshi,Sasaki Takuya,Urakawa Tatsuhiro, ,

Abstract

This paper proposes a robot teaching method using augmented and virtual reality technologies. Robot teaching is essential for robots to accomplish several tasks in industrial production. Although there are various approaches to perform motion planning for robot manipulation, robot teaching is still required for precision and reliability. Online teaching, in which a physical robot moves in the real space to obtain the desired motion, is widely performed because of its ease and reliability. However, actual robot movements are required. In contrast, offline teaching can be accomplished entirely in the computational space, and it requires constructing the robot’s surroundings as computer graphic models. Additionally, planar displays do not provide sufficient information on 3D scenes. Our proposed method can be employed as offline teaching, but the operator can manipulate the robot intuitively using a head-mounted device and the specified controllers in the virtual 3D space. We demonstrate two approaches for robot teaching with augmented and virtual reality technologies and show some experimental results.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3