Efficient Registration of Laser-Scanned Point Clouds of Bridges Using Linear Features

Author:

Date Hiroaki,Yokoyama Takahito,Kanai Satoshi,Hada Yoshiro,Nakao Manabu,Sugawara Toshiya, , , ,

Abstract

Efficient registration of point clouds from terrestrial laser scanners enables us to move from scanning to point cloud applications immediately. In this paper, a new efficient rough registration method of laser-scanned point clouds of bridges is proposed. Our method relies on straight-line edges as linear features, which often appear in many bridges. Efficient edge-line extraction and line-based registration methods are described in this paper. In our method, first, sampled regular point clouds based on the azimuth and elevation angles are created, and planar regions are extracted using the region growing on the regular point clouds. Then, straight lines of the edges of the planar regions are extracted as linear features. Next, vertical and horizontal line clusters are created according to the direction of the lines. To align the position and orientation of two point clouds, two corresponding nonparallel line pairs from line clusters are used. In the registration process, the RANSAC approach with a hash table of line pairs is used. In this process, the hash table is used for finding candidates of corresponding line pairs efficiently. Sampled points on the line pairs are used to align the line pairs, and occupied voxels and downsampled point clouds are used for efficient consensus calculation. The method is tested using three data sets of different types of bridges: a small steel bridge, a middle-size concrete bridge, and a high-pier concrete bridge. In our experiments, successful rates of our rough registration were 100%, and the processing time of rough registration for 19 point clouds was about 1 min.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3