Effective, Consistent, and Rapid Noncontact Application Methods for Seedling Basal Stem Infection by Sclerotinia sclerotiorum

Author:

Han Viet-Cuong12ORCID,Michael Pippa J.1ORCID,Crockett Rachael1,Swift Bec2,Bennett Sarita Jane12ORCID

Affiliation:

1. Centre for Crop and Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia

2. School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia

Abstract

Sclerotinia sclerotiorum (Lib.) de Bary, an economically devastating soilborne fungal pathogen known to cause disease across a wide range of plants, produces long-term inoculum called sclerotia that can germinate either carpogenically by ascospores infecting aboveground plant parts or myceliogenically to infect stem base and roots. Typically, for research purposes, S. sclerotiorum diseases are initiated by direct contact methods, using S. sclerotiorum mycelium agar plugs wrapped around the stem or sclerotia placed directly beneath root mass. However, reproducible noncontact methods leading to basal stem infection are not currently available. Therefore, the objective of this study was to develop effective noncontact protocols that consistently generate basal plant stem infection from S. sclerotiorum in the soil. Using three host plant species (canola, lupin, and lettuce), we determined two methods that reliably produced basal stem infection. The first method, where mycelial agar plugs were positioned just below the soil surface at a distance of 5 mm from each seedling, led to 100% infection in all plants. The second method used pathogen-infested soil by mixing the soil with dry inoculum in the form of a powder prepared from mycelium-colonized organic substrates. Four substrates consistently produced 100% seedling infection at 4 days after inoculation (DAI): wheat bran, wheat grain, red rice, and hulled millet. In contrast, chia, canary, sesame, and ryegrass seed substrates resulted in less than 50% seedling infection at 10 DAI, and infection levels did not progress further. The two soil inoculation methods outlined in this study will enhance future research on the progression of S. sclerotiorum diseases, with the potential to screen disease-resistant host genotypes to basal S. sclerotiorum infection and, in particular, to test the effectiveness of soil applications of fungicides or biocontrol agents against S. sclerotiorum basal infection.

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3