Phenylpropanoids following wounding and infection of sweet sorghum lines differing in responses to stalk pathogens

Author:

Khasin Maya L.1,Bernhardson Lois F.1,O'Neill Patrick M.1,Palmer Nathan A.2,Scully Erin D.3,Sattler Scott E.1,Sarath Gautam4,Funnell-Harris Deanna Lillian5

Affiliation:

1. USDA-ARS, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska, United States;

2. USDA-ARS, 251 Filley Hall, Lincoln, Nebraska, United States, 68583;

3. USDA-ARS, Stored Product Insect and Engineering Research Unit, , Manhattan, Kansas, United States;

4. USDA-ARS, Lincoln, Nebraska, United States;

5. USDA-ARS, Grain, Forage and Bioenergy Res., 314 BioChem Hall, UNL-East Campus, Lincoln, Nebraska, United States, 68583-0737, , ;

Abstract

Sweet sorghum [Sorghum bicolor (L.) Moench] lines M81-E and Colman were previously shown to differ in responses to Fusarium thapsinum and Macrophomina phaseolina, stalk rot pathogens that can reduce yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following M. phaseolina inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length, for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3