Inheritance and Linkage of Virulence Genes of Puccinia striiformis f. sp. hordei

Author:

Du Zhimin1,Li Zejian1,Peng Yuelin2,Zhang Gensheng1ORCID,Sun Mudi1,Li Sinan1,Ma Xinyao1,Chen Li3,Kang Zhensheng1ORCID,Zhao Jie1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China

2. Department of Plant Sciences, Agricultural and Animal Husbandry College of Tibet University, Linzhi, Tibet 86000, China

3. Extension Center for Agricultural Technology, Agriculture Department of Tibetan Autonomous Region, China

Abstract

Puccinia striiformis f. sp. hordei ( Psh) causing barley stripe rust has only recently been known to be heteroecious, for which reason the inheritance of its virulence has not been analyzed. Herein, we selfed a Psh isolate, XZ-19-972, on Berberis aggregata and obtained 53 progenies. The virulence phenotypes (VPs) for these progenies were identified on 11 barley differentials, and their genotypes were assessed with 22 Kompetitive allele specific PCR-single nucleotide polymorphism (KASP-SNP) markers. In total, 18 VPs were detected among progenies, 17 (VP2-VP18) of which, corresponding to 43 isolates, were different from the parental isolate showing VP1. Of the 53 progenies, 8 exhibited increased virulence and 34 decreased virulence. One progeny, belonging to VP18, showed a different virulence formula but without a virulence increase or decrease. The parental isolate and all progenies were avirulent to yrc6 but virulent to yrc7. The parental isolate was heterozygous in terms of avirulence/virulence to nine barley resistance gene loci. KASP-SNP marker analysis identified 36 multilocus genotypes, based on which a linkage map was constructed, with total genetic distance intervals of 516.07 cM, spanning 16 avirulence or virulence loci. Taken together, our results provide important insights into the inheritance and virulence diversity of Psh.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Project of Science and Technology of Tibetan Autonomous Region, China

National “111 Plan”

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3