Effect of Soybean Cyst Nematode Resistance Source and Seed Treatment on Population Densities of Heterodera glycines, Sudden Death Syndrome, and Yield of Soybean

Author:

Kandel Yuba R.1,Wise Kiersten A.2,Bradley Carl A.3,Chilvers Martin I.4,Byrne Adam M.4,Tenuta Albert U.5,Faghihi Jamal6,Wiggs Stith N.1,Mueller Daren S.1

Affiliation:

1. Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011

2. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907

3. Department of Plant Pathology, University of Kentucky, Princeton 42445

4. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824

5. Ontario Ministry of Agriculture, Food, and Rural Affairs, Ridgetown, ON N0P2C0, Canada

6. Department of Entomology, Purdue University, West Lafayette, IN 47907

Abstract

A three-year study was conducted in Illinois, Indiana, Iowa, Michigan, and Ontario, Canada, from 2013 through 2015 to determine the effect of soybean (Glycine max) cultivars’ source of soybean cyst nematode (SCN; Heterodera glycines) resistance on SCN population densities, sudden death syndrome (SDS; caused by Fusarium virguliforme), and yield of soybean. Five cultivars were evaluated with and without fluopyram seed treatment at each location. Cultivars with no SCN resistance had greater SDS severity, greater postharvest SCN egg counts (Pf), and lower yield than cultivars with plant introduction (PI) 548402 (Peking) and PI 88788-type of SCN resistance (P < 0.05). Cultivars with Peking-type resistance had lower Pf than those with PI 888788-type and no SCN resistance. In two locations with HG type 1.2-, cultivars with Peking-type resistance had greater foliar disease index (FDX) than cultivars with PI 88788-type. Fluopyram seed treatment reduced SDS and improved yield compared with a base seed treatment but did not affect SCN reproduction and Pf (P > 0.05). FDX and Pf were positively correlated in all three years (P < 0.01). Our results indicate that SDS severity may be influenced by SCN population density and HG type, which are important to consider when selecting cultivars for SCN management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3