Characterization of Fusarium Head Blight Resistance and Deoxynivalenol Accumulation in Hulled and Hulless Winter Barley

Author:

Berger Gregory1,Green Andrew2,Khatibi Piyum3,Brooks Wynse4,Rosso Luciana5,Liu Shuyu6,Chao Shiaoman7,Griffey Carl4,Schmale David8

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Rice Research and Extension Center, Stuttgart 72160

2. Department of Agronomy, Kansas State University, Manhattan 66506

3. Department of Plant Pathology, Physiology, and Weed Science

4. Department of Crop and Soil Environmental Sciences

5. Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg 24061

6. Texas AgriLife Research, Texas A&M, Amarillo 79106

7. United States Department of Agriculture–Agricultural Research Service Biosciences Research Lab, Fargo, ND 58102

8. Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most serious diseases impacting the U.S. barley (Hordeum vulgare) industry. The mycotoxin deoxynivalenol (DON), produced by the pathogen, renders grain unmarketable if concentrations exceed threshold values set for end-use markets. Development of cultivars with improved FHB resistance and reduced DON accumulation is necessary to ensure minimal losses. Elite hulled and hulless genotypes developed by the Virginia Tech winter barley breeding program were screened in inoculated, mist-irrigated FHB nurseries over 2 years at two locations in Virginia to validate resistance levels over years and locations. Results demonstrated that barley genotypes varied significantly for resistance to FHB and DON accumulation. The hulled ‘Nomini’, hulless ‘Eve’, and hulless line VA06H-48 were consistently resistant across locations to both FHB and DON accumulation. Screening the genotypes with molecular markers on chromosomes 2H and 6H for FHB and DON revealed quantitative trait loci regions which may confer resistance in the Virginia Tech germplasm. Ongoing and future work with mapping populations seeks to identify novel regions for resistance to FHB and DON accumulation unique to the Virginia Tech breeding program.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3