A Portable Nucleic Acid Sensor Based on PCR for Simple, Rapid, and Sensitive Testing of Botrytis cinerea in Ginseng

Author:

Ren Bairu12,Wang Yi1,Chen Huijie2,Diao Lei2,Wang Jiaxin23,Zhang Shuoyuan2,Zhang Yongzhe2,Zhang Meiping1,Yin Rui2ORCID,Wang Yanfang13

Affiliation:

1. College of Life Science, Jilin Agricultural University, Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China

2. College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China

3. Jilin Agricultural University, Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Changchun 130118, China

Abstract

Botrytis cinerea is a ubiquitous pathogen that can infect at least 200 dicotyledonous plant species including many agriculturally and economically important crops. In Ginseng, the fungus may cause ginseng gray mold disease, causing great economic losses in the ginseng industry. Therefore, the early detection of B. cinerea in the process of ginseng production is necessary for the disease prevention and control of the pathogen’s spread. In this study, a polymerase chain reaction-nucleic acid sensor (PCR-NAS) rapid detection technique was established, and it can be used for field detection of B. cinerea through antipollution design and portable integration. The present study showed that the sensitivity of PCR-NAS technology is 10 times higher than that of traditional PCR-electrophoresis, and there is no need for expensive detection equipment or professional technicians. The detection results of nucleic acid sensors can be read by the naked eye in under 3 min. Meanwhile, the technique has high specificity for the detection of B. cinerea. The testing of 50 field samples showed that the detection results of PCR-NAS were consistent with those of the real-time quantitative PCR (qPCR) method. The PCR-NAS technique established in this study can be used as a novel nucleic acid field detection technique, and it has a potential application in the field detection of B. cinerea to achieve early warning of the pathogen infection.

Funder

Province of Jilin Science and Technology Development Plan

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3