Multiple Fungicide Resistance in Botrytis cinerea from Greenhouse Strawberries in Hubei Province, China

Author:

Fan F.1,Hamada M. S.2,Li N.3,Li G. Q.3,Luo C. X.4

Affiliation:

1. Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. College of Plant Science and Technology, Huazhong Agricultural University, and Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt

3. College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University

4. Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and Technology, Huazhong Agricultural University

Abstract

Two hundred and forty isolates of Botrytis cinerea were collected during the early summer of 2012 and 2013 from strawberry greenhouses in 10 locations in Hubei Province and examined for sensitivity to five fungicides, most of which were commonly used to control this fungus. High frequency of resistance to carbendazim (Car, 63.63%) and cyprodinil (Cyp, 42.42%) was detected. Boscalid-resistant (BosR) isolates were detected for the first time in China, whereas no fludioxonil-resistant isolates were identified. Dual resistance to carbendazim and diethofencarb (Die) was also detected. There were six phenotypes of resistance profile (i.e., CarRDieSBosSCypS, CarRDieRBosSCypS, CarRDieSBosSCypR, CarRDieSBosRCypS, CarRDieRBosSCypR, and CarRDieSBosRCypR). CarRDieSBosSCypS and CarRDieSBosSCypR were the most common phenotypes, occurring at eight and seven locations, respectively. After 10 successive transfers on fungicide-free potato dextrose agar, tested resistant isolates retained levels of resistance similar to or comparative with the initial generation, indicating the stability of these resistances. Fitness evaluations based on investigation of mycelial growth, osmotic sensitivity, sporulation in vitro and in vivo, and virulence revealed the uncompromising fitness in resistant isolates, except that decreased virulence was observed in BosR isolates. The molecular basis of carbendazim, diethofencarb, and boscalid resistance was investigated. Results showed that all 13 sequenced carbendazim-resistant isolates harbored the mutation E198V or E198A in the β-tubulin gene and the five isolates with dual resistance to carbendazim and diethofencarb showed the mutation E198K in the same gene. BosR isolates possessed the H272R mutation in succinate dehydrogenase subunit B gene. The results achieved in this study challenge the current management strategies for B. cinerea, which largely depend on applications of these fungicides.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3