Regulation of Positive-Strand Accumulation by Capsid Protein During Brome mosaic virus Infection In Planta

Author:

de Wispelaere Mélissanne1,Sivanandam Venkatesh1,Rao A. L. N.1ORCID

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122

Abstract

A hallmark feature of (+)-strand RNA viruses of eukaryotic cells is that progeny (+)-strands are accumulated 100-fold over (−)-strands. Previous experimental evidence suggests that, in Brome mosaic virus (BMV), a plant-infecting member of the alphavirus-like superfamily, the addition of RNA3 and, specifically, translation of the wild-type (WT) coat protein (CP) gene contributes to increased accumulation of (+)-strands. It is unclear whether this stimulation of (+)-strand accumulation by CP is due to direct regulation of viral RNA replication or RNA stabilization via encapsidation. Analysis of BMV progeny RNA in Nicotiana benthamiana plants revealed that expression of RNA3 variants that did not express WT CP led to a severe defect in BMV (+)-strand accumulation. The (+)-strand accumulation could be rescued when CP was complemented in trans. To verify whether stimulation of (+)-strand accumulation is coupled with encapsidation, two independent mutations were engineered into CP open reading frames. An N-terminal deletion that prevented CP binding to the viral RNAs resulted in a severe reduction of BMV (+)-strand accumulation but stimulated (−)-strand accumulation over the WT. On the other hand, a C-terminal mutation affecting CP dimerization caused a significant decrease in (+)-strand accumulation but had no detectable effect on (−)-strand accumulation. Nucleotide sequences in the movement protein-coding region were also found to contribute to (+)-strand accumulation, in part by providing packaging signals for efficient RNA3 encapsidation. Overall, these results show that RNA encapsidation is a significant determinant of BMV RNA intracellular accumulation.

Funder

UCR-RSAP

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3