Neurotransmitter alterations in embryonic succinate semialdehyde dehydrogenase (SSADH) deficiency suggest a heightened excitatory state during development

Author:

Jansen Erwin EW,Struys Eduard,Jakobs Cornelis,Hager Elizabeth,Snead O Carter,Gibson K Michael

Abstract

Abstract Background SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1); γ-hydroxybutyric (GHB) aciduria) deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1-/- mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA), homocarnosine (HC), 4,5-dihydroxyhexanoic acid (DHHA) and guanidinobutyrate (GB)] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG)] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1-/- embryo development. Methods Embryos were obtained from pregnant dams sacrificed at E (embryo day of life) 10–13, 14–15, 16–17, 18–19 and newborn mice. Intact embryos were extracted and metabolites quantified by isotope dilution mass spectrometry (n = 5–15 subjects, Aldh5a1+/+ and Aldh5a1-/-) for each gestational age group. Data was evaluated using the t test and one-way ANOVA with Tukey post hoc analysis. Significance was set at the 95th centile. Results GABA and DHHA were significantly elevated at all gestational ages in Aldh5a1-/- mice, while GB was increased only late in gestation; SSA was not elevated at any time point. GHB and D-2-HG increased in an approximately linear fashion with gestational age. Correlative studies in human amniotic fluid from SSADH-deficient pregnancies (n = 5) also revealed significantly increased GABA. Conclusion Our findings indicate early GABAergic alterations in Aldh5a1-/- mice, possibly exacerbated by other metabolites, which likely induce a heightened excitatory state that may predispose neural networks to epilepsy in these animals.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3