A decision support tool with health economic modelling for better management of DVT patients

Author:

Lebcir RedaORCID,Yakutcan UsameORCID,Demir ErenORCID

Abstract

Abstract Background Responding to the increasing demand for Deep Vein Thrombosis (DVT) treatment in the United Kingdom (UK) at times of limited budgets and resources is a great challenge for decision-makers. Therefore, there is a need to find innovative policies, which improve operational efficiency and achieve the best value for money for patients. This study aims to develop a Decision Support Tool (DST) that assesses the impact of implementing new DVT patients’ management and care policies aiming at improving efficiency, reducing costs, and enhancing value for money. Methods With the involvement of stakeholders from a number of DVT services in the UK, we developed a DST combining discrete event simulation (DES) for DVT pathways and the Socio Technical Allocation of Resources (STAR) approach, an agile health economics technique. The model was inputted with data from the literature, local datasets from DVT services, and interviews conducted with DVT specialists. The tool was validated and verified by various stakeholders and two policies, namely shifting more patients to community services (CSs) and increasing the usage of the Novel Oral Anticoagulant (NOAC) drug were selected for testing on the model. Results Sixteen possible scenarios were run on the model for a period of 5 years and generated treatment activity, human resources, costing, and value for money outputs. The results indicated that hospital visits can be reduced by up to 50%. Human resources’ usage can be greatly lowered driven mainly by offering NOAC treatment to more patients. Also, combining both policies can lead to cost savings of up to 50%. The STAR method, which considers both service and patient perspectives, produced findings that implementing both policies provide a significantly higher value for money compared to the situation when neither is applied. Conclusions The combination of DES and STAR can help decision-makers determine the interventions that have the highest benefits from service providers' and patients’ perspectives. This is important given the mismatch between care demand and resources and the resulting need for improving operational and economic outcomes. The DST tool has the potential to inform policymaking in DVT services in the UK to improve performance.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3